

AES-VMUX/-SFP User Manual

Revision: G

2014-07-10

Contents

1	Nevi	on Supp	ort	4
2	Revis	sion Hist	tory	5
3	Prod	uct Over	view	6
	3.1	Summ	ary	6
4	Intro	duction		8
	4.1	The No.	evion SDTI audio concept HW 1.1 enhancements	9 10
	4.2	Top vi	ew	10
5	Speci	fications	S	11
	5.1	Electri	cal SDTI	11
	5.2	Optica	al SDTI	11
	5.3	AES		11
	5.4	Latenc		11
		5.4.1	Slave modules	12
		5.4.2 5.4.3	Clock master module Audio latency	12 12
	5.5	Power	•	12
	5.6		wander and jitter tolerance	13
	0.0	mput	wanter and juice tolerance	10
6	Conf	iguratior	1	14
	6.1	Clock 1 6.1.1	Master SW2 6 Clock Master made	14
	6.2		SW2.6 Clock Master mode	15
	6.2		port direction	15
	6.3		ddresses Input addresses	16 17
		6.3.2	Output addresses	17
		6.3.3	System address planning	18
	6.4	Metho	od .	18
	6.5	Examp	bles	18
		6.5.1	Example 1	19
		6.5.2	Example 2	21
		6.5.3	Example 3	22
	6.6	SDTI i	nput control	23

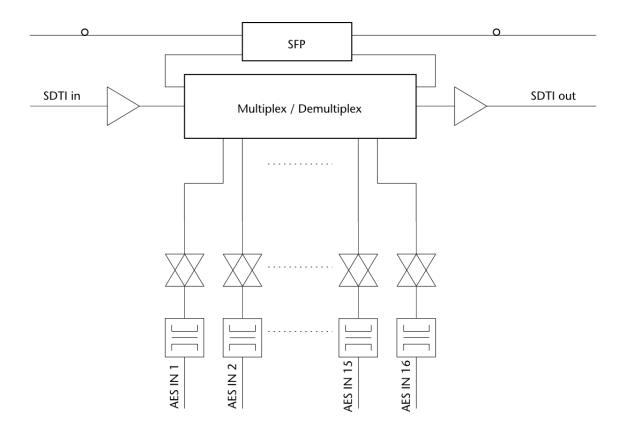
		6.6.1 6.6.2	SW2.4 Manual/Auto SW2.5 Optical/Electrical	23 23
	6.7		onfiguration mode	23
		6.7.1	SW2.8 DIP config mode switch.	23
	6.8	Multic	on control	24
	6.9	Status	Monitoring	24
7	Conn	ections		25
8	LEDs			29
	8.1	Status	LED	29
	8.2	SDTI I	nput LED	29
	8.3	EDH L	LED	29
	8.4	Optica	l option LED	30
9	FLP4	comman	nds	31
	9.1	ablk		31
	9.2	ceq		31
	9.3	misc		31
	9.4	mtx		32
	9.5	pin and	d lsr	32
	9.6	pwr		32
	9.7	vmon		32
	9.8	On-site	e re-programming.	33
10	Gene	ral envir	ronmental requirements	34
11	Produ	ıct Warra	anty	35
A	Mate	rials dec	laration and recycling information	36
	A.1	Materi	als declaration	36
	A.2	Recycl	ing information	37

1 Nevion Support

Nevion Europe	Nevion USA
Nevion Europe	Nevion USA
P.O. Box 1020 3204	1600 Emerson Avenue Oxnard,
Sandefjord, Norway	CA 93033, USA
Support phone 1:	Toll free North
+47 33 48 99 97	America: (866) 515-0811
Support phone 2: +47 90 60 99 99	Outside North America: $+1$ (805) 247-8560

E-mail: support@nevion.com

See http://www.nevion.com/support/ for service hours for customer support globally.



2 Revision History

Revision	Date	Comments
G	2014-06-24	Added example key figure and extra text on example figures. HW 1.1 features listed. Input switch control added.
F	2013-11-15	Corrected AES-VMUX-C1 figure. Added cable length specification. Added AES-VMUX-SFP
E	2013-11-04	Added Materials decaration and support info
D	2013-06-02	TMLified
С	2013-03-11	First public release
В	2012-08-29	Manual configuration replaces autoconfiguration
A	2012-07-10	First revision

3 Product Overview

3.1 Summary

- Digital audio mass transport
- Asynchronous audio
- Phase correct audio clock recovery
- Predictable signal latency
- 16 AES ports per module, configurable direction
- Up to 64 AES channels per SDTI stream
- De-multiplexing from any timeslot.
- Loopable multiplex for distributed routing

- EDH for connection monitoring
- Optical SDTI options on SFP

4 Introduction

The AES-VMUX is used to transport a large number of digital audio signals. The module is both a multiplexer and demultiplexer and has 16 AES audio ports which may be used as inputs or outputs. The module forms the core of a highly flexible audio transport and routing concept.

The audio transport has a fixed embedding and de-embedding delay of 64us. The audio signals are transported completely asynchronously and bit transparently. The clock and phase information of each AES signal is transported along with the data and the signal is re-constructed at the demultiplexer end. This keeps all of the AES signals time-aligned through the multiplex and preserves the signal phase alignment of multichannel audio.

The module encodes the audio into an SD SDTI video signal and uses the active video space in the video frame. This allows routing and transport of the multiplex through an established broadcast infrastructure and inspection with standard test equipment/ waveform viewers.

Modules may be daisy chained to increase the number of AES audio signals in the SDTI signal up to a maximum of 64 AES channels.

Demultiplexing may be performed on any module from any of the audio signals in the SDTI multiplex. Each demultiplex channel is, in effect, a 64 to 1 AES router.

The module may also be equipped with an SFP providing optical link capability.

Six backplane types are presently available:-

- Double width backplanes
 - AES-MUX-C1; All 16 AES ports on female d-sub DB25 and dual optical connectors.
 - AES-VMUX-C5; As AES-MUX-C1 but with passive relay loop-through on electrical SDTI.
- Single width backplanes
 - AES-VMUX-C1; 8 AES ports on DB25, DIN 1.0/2.3 SDTI and dual optical connectors.
 - AES-VMUX-C4; 8 AES ports on DB25, BNC SDTI and single optical connector.
- Flashcase single width backplanes
 - AES-VMUX-C2; 16 AES ports on Molex Male KK, BNC SDTI output only and dual optical connectors.
 - AES-VMUX-C3; 16 AES ports on Molex Male KK, BNC SDTI and single optical connector.

SFPs are available for:-

• APD/CWDM Transceiver (18 wavelengths)

• PIN/Standard laser tranceiver

The following Nevion video SFPs may be used but only one of the channels will be utilised.

- PIN dual receiver
- APD dual receiver
- Standard short haul dual laser
- CWDM dual laser

The optical input provides an extra input and the actual input may be chosen automatically or set manually to the required input. In "Auto" mode, the input switches if a suitable signal is not present, or if the signal disappears. There is no priority, the first input with a valid Nevion SDTI audio signal is used.

4.1 The Nevion SDTI audio concept

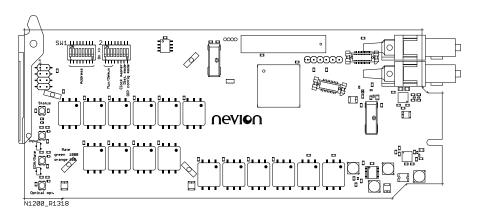
The Nevion SDTI audio uses a normal 625 video frame and data format. This allows simple reuse of existing legacy infrastructure and standard test and signal monitoring facilities. The audio is embedded into the active video area on all video lines. An extra ancillary data packet in the horizontal blanking area identifies the signal as a Flashlink SDTI audio multiplex.

The audio embedding uses two video lines to optimize the number of channels in the multiplex. Seven stereo audio samples, embedded over two lines gives a maximum sample rate of 54.7 kHz. This gives a high multiplexing efficiency of normal 48 kHz broadcast audio. The embedding pattern repeats over a two frame sequence. The phase reference is only inserted on one of the two lines and a frame counter is also embedded into the horizontal ancillary data packet.

The audio is embedded in fixed timeslots placed along the video line. The phase words are embedded in a block of video words placed first on every other line followed by seven audio blocks. Each audio block has 64 audio timeslots. Each timeslot contains a 24 bit audio sample together with the C, U and V bits from the AES subframe. The frame of AES audio is split between two audio blocks.

The audio multiplex appears on a video monitor as a series of vertical lines or stripes on a video monitor. Dark green stripes are areas where no audio is embedded. Light green shows that the channels are embedded but that the AES input is absent. An active audio channel appears as a multicolored vertical stripe.

The SDI embedded clock is used as a clock reference and the audio is sampled with reference to the start of the horizontal blanking. The phase measurement (similar to HD audio) is embedded on the following line. All of the audio channels use the same reference point and all of the phase measurements are embedded together in a block.



4.1.1 HW 1.1 enhancements

Extra VCXO to allow input locking independant of output frequency. This gives the following:-

- Wider input jitter tolerance.
- Master mode module will de-multiplex audio to its AES outputs regardless of loop status. i.e. System is more resiliant as a module may fail but the remaining chains of modules still present will still work.
- More stable frequency of SDTI as the output frequency will not change until full lock is achieved. i.e. Downstream modules will not lose lock when an upstream module is removed. Performance with the relay backplane is now much improved.
- Wander tolerance of Master mode module is much larger allowing the use of a loop across video links which are time multiplexed or packetized.

4.2 Top view

5 Specifications

5.1 Electrical SDTI

Video standard	576/25i ITU-R BT.656	
Error detection	EDH according to SMPTE RP165	
Input cable length	Greater than 250m	

All other SDI parameters conform to ITU-R BT.656

5.2 Optical SDTI

Optical range depends on the output power of the transmitter and the sensitivity of the receiver of the next module.

See Nevion SFP datasheet available from support or the Nevion web site.

5.3 **AES**

Inputs and outputs according to	AES3-2003
Physical interface	110 ohm transformer balanced
Minimum sampling frequency	16.5 kHz
Maximum sampling frequency	54.7 kHz
Double sample rates using AES	Single channel double sampling frequency mode is supported. i.e. 96kHz Mono
	signal using both sub-frames of the AES signal.

AES Outputs switch off completely if there is no signal in the routed timeslot.

5.4 Latencies

5.4.1 Slave modules

HW	1.0	1.1
Video latency	0.56 us	0.85 us

5.4.2 Clock master module

The master module has a buffer which may be up to 2 video lines or 128 us. The actual latency will depend on the latency due to the round trip which may be large if packetizing transports have been used or if the stream has been received via satellite. The Clock master module will then add as little latency as possible to round the total latency up to a multiple of two video lines. Minimum latency is 128us.

5.4.3 Audio latency

Input to output via a single link

AES 128us / 6.145 audio samples @ 48kHz

Audio Latency will increase by the video latency every time the SDTI signal passes through a module.

5.5 Power

All AES set to inputs		
+5V	0.29 1.5W	
All AES set to outputs		
+5V	0.67A 3.4W	
with SFP		
+5V	add 1.0 W	

5.6 Input wander and jitter tolerance

Slave mode			
Wander	locks to the input clock so wander is not relevant.		
Jitter	< 1 UI p-p.		

Master clock mode HW 1.0	
Wander plus Jitter	< 1 UI p-p.

Master clock mode HW 1.1 Suitable for use with IP	bridges etc.
Wander	512 UI p-p.
Jitter	< 1 UI p-p.

6 Configuration

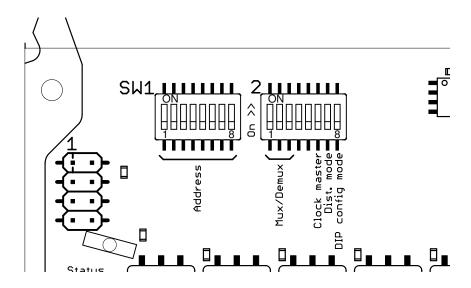


Figure 6.1 Module DIP switches.

The module DIP switches must be set up correctly. The module has 16 audio ports and the first thing to consider is the port directions. This influences all of the following steps. The three things that *must* set with the DIP switches are:

- 1. AES port direction
- 2. Input port embedding start address
- 3. Clock master mode

Routing to the output ports may be controlled with Multicon GYDA if the 'DIP config mode' is off. If 'on', the start address is set with the switches.

6.1 Clock Master

This mode is only used by one card in the system and is only necessary when the SDTI signal is sent in a loop. A module set as clock master will not try to lock to the input SDTI signal but will still extract the data and re-multiplex the audio in the output stream-

HW 1.0 -as long as the jitter and wander in the signal is less than 1 UI.

HW 1.1 -in all cases to the AES outputs. The audio which is re-embedded into the multiplex will

contain errors, if the wander is *very* large or periodically when the loop is not complete. This hardware version may be used for looped configurations where one or more of the module connections is over a link where wander is present on the output signal, i.e. IP or SDH video links.

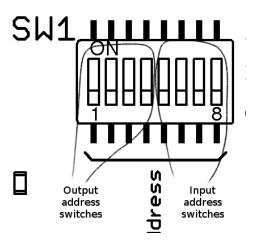
6.1.1 SW2.6 Clock Master mode

• On: Module is the clock master

• Off: Module is a clock slave

6.2 Audio port direction

The 16 audio ports are controlled in blocks of four ports. There are only 5 valid combinations and these are set with DIP switches SW2 1-3.


Table 6.1 AES Port direction DIP switch settings

DIP SW2 1,2,3 Outputs Inputs			
off,off,off 0 16			
off,off,on	4	12	
off,on ,off	8	8	
off,on ,on	12	4	
on ,on ,on	16	0	

The AES outputs are *always* the first ports in the connectors. e.g. 12 inputs and 4 outputs mode has AES 1-4 as outputs and AES 5-16 as inputs.

6.3 Port addresses

Table 6.2 Start address, DIP switch settings

DIP SW1 1,2,3,4 or 5,6,7,8 Start address		
off,off,off	1	
off,off,off,on	5	
off,off,on ,off	9	
off,off,on ,on	13	
off,on ,off,off	17	
off,on ,off,on	21	
off,on ,on ,off	25	
off,on ,on ,on	29	
on ,off,off,off	33	
on ,off,off,on	37	
on ,off,on ,off	41	
on ,off,on ,on	45	
on ,on ,off,off	49	
on ,on ,off,on	53	
on ,on ,off	57	
on ,on ,on ,on	61	

6.3.1 Input addresses

The input address switches *always* set where the AES input signals are multiplexed.

The start timeslot used is set with DIP SW1 5-8 according the above table. The address start points hop over 4 addresses because the AES ports are always inputs or outputs in blocks of four. The 16 combinations with 4 dip switches cover the range of addresses in the multiplex (16 timeslots \times 4 = 64). The other input ports are placed consecutively in the multiplex after the start address.

The audio of these physical input ports will be available in the multiplex for all the AES-VMUX cards in the chain, unless they are overwritten by inputs on other cards that have overlapping multiplex addressing.

6.3.2 Output addresses

The AES output signal routing may be set by the DIP switches in DIP mode, or with the Multicon GYDA system controller.

The signal routed to the first AES output port comes from the timeslot set with DIP SW1 1-4 if the DIP config mode switch is on/up.

The other physical output ports have signals consecutively in the multiplex after this address.

The output port addressing may be individually controlled by the Multicon system controller if the DIP config mode switch is off/down.

6.3.3 System address planning

The number of timeslots in the multiplex used by the module depends on the number of input ports in the module.

It is up to the user to ensure that the addressing is consistent and timeslots are not overwritten (unless this is intended).

6.4 Method

- 1. First define the port directions on each module.
- 2. Arrange each site so that the modules with de-multiplexing channels come first in the SDTI chain.
- 3. Assign the addresses to the modules with multiplexing channels.
- 4. Assign the addresses to the modules with de-multiplexing channels.

Most configurations will be simpler than the last two examples here.

6.5 Examples

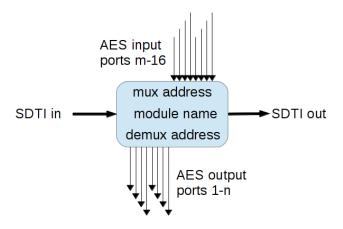
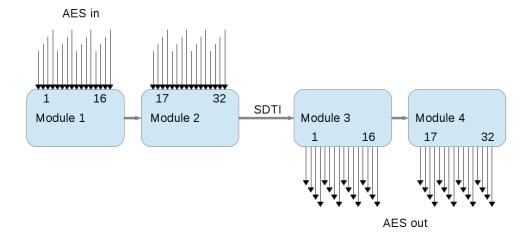



Figure 6.2 Key to example graphics

6.5.1 Example 1

Figure 6.3 32 channel AES transport from site A to site B.

Table 6.3 module 1, mux 1-16

Port Directions	SW2 1-3	off, off, off
Demux start address	SW1 1-4	not used
Mux start address	SW1 5-8	off, off, off, off

Table 6.4 module 2, mux 17-32

Port Directions	SW2 1-3 off, off, off
Demux start address	SW1 1-4 not used
Mux start address	SW1 5-8 off, on, off, off

Table 6.5module 3, demux 1-16

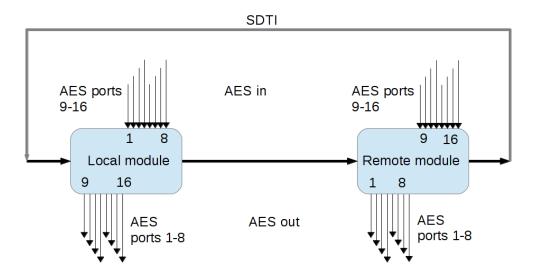

Port Directions	SW2 1-3	on ,on ,on
Demux start address	SW1 1-4	off, off, off, off
Mux start address	SW1 5-8	not used

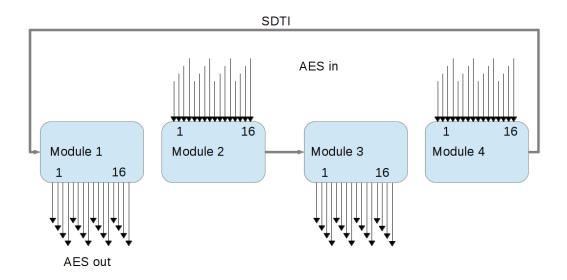
Table 6.6 module 4, demux 17-32

Port Directions	SW2 1-3 on ,on ,on
Demux start address	SW1 1-4 off, on, off, off
Mux start address	SW1 5-8 not used

6.5.2 Example 2

Figure 6.4 Point to point 8 out and 8 back.- 2 Modules, 2 sites.

Both modules are used for embedding and de-embedding and the SDTI signal is connected in a loop so one of the modules *must* be the clock master.


Table 6.7 Local module

Port Directions	SW2 1-3	off, on, off
Master clock mode	SW2.6	on
Demux start address	SW1 1-4	off, off, on , off
Mux start address	SW1 5-8	off, off, off, off

 Table 6.8
 Remote module

Port Directions	SW2	1-3	off ,on ,off
Demux start address	SW1	1-4	off, off, off
Mux start address	SW1	5-8	off, off, on , off

6.5.3 Example 3

Figure 6.5 Point to point 16 out 16 back. 4 modules, 2 sites.

The two signal directions do not share any channels so keep the SDTI chains separate. The two chains may then be configured identically.

Table 6.9 Modules 1 and 3, demux 1-16

Port Directions	SW2	1-3	on ,on ,on
Demux start address	SW1	1-4	off, off, off, off
Mux start address	SW1	5-8	not used

Table 6.10 Modules 2 and 4, mux 1-16

Port Directions	SW2	1-3	off,	off, off
Demux start address	SW1	1-4	not	used
Mux start address	SW1	5-8	off,	off, off, off

6.6 SDTI input control

If an optical is present on the module the input selector may be manually set to one of the inputs or allowed to switch automatically.

If in DIP configuration mode:-

6.6.1 SW2.4 Manual/Auto

- On: Manual, input is fixed. SW2.5 setting is used
- Off: Auto, input will search for a Network SDTI audio signal. SW2.5 is ignored

6.6.2 SW2.5 Optical/Electrical

- On: Optical input is used
- Off: Electrical input is used

6.7 DIP configuration mode

The AES output port routing and the SDTI input switch control may be controlled by the system controller and stored in the module. The AES input routing and the AES port directions parameters are *always* controlled with the DIP switches.

6.7.1 SW2.8 DIP config mode switch.

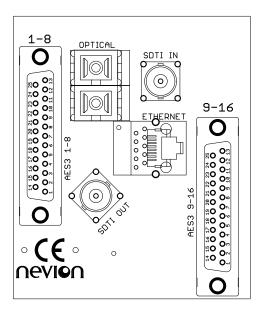
- On: The card will be configured with the DIP switches. The module will not accept commands from the system controller but may be monitored.
- Off: The module will be configured with the internally stored configuration and the AES output routing and SDTI input may be controlled with FLP4 commands as listed in chapter 6.

As with all Flashlink modules, stored configurations in the Multicon controller will be applied to a module that is plugged into a running system, provided that the switch SW2.8 is off and that the last module present in the system was of the same type. A module with SW2.8 on, plugged into a running system will overwrite the stored configuration in the Multicon controller with its own configuration.

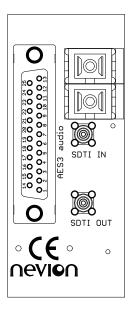
6.8 Multicon control

The module may be monitored and controlled with the Multicon system controller. Port direction and multiplexing time-slots may be monitored. Each de-multiplexer port / AES output is present in the audio matrix which may be controlled by the system controller.

6.9 Status Monitoring


The AES digital audio signal presence for both multiplexer and de-multiplexer ports and the on-board power levels are presented on the info page. Alarms are generated for AES signal loss, SDTI loss, and power supply violations.

SFP presence and type are detected automatically and the optical input and output status will appear when appropriate.


Input switching control and position will only be displayed when the optical input is present. Master clock mode is also only diplayed when active.

7 Connections

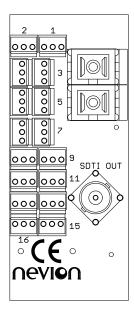


Figure 7.1 AES-MUX-C1: AES ports 1-16, BNC SDTI and dual optical connectors

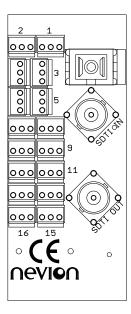


Figure 7.2 AES-VMUX-C1: AES ports 1-8, DIN SDTI and dual optical connectors

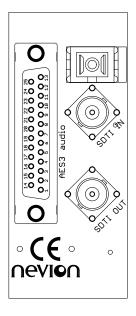


Figure 7.3 AES-VMUX-C2:Flashcase, 16 AES Molex KK ports, BNC SDTI o/p, dual optical connectors

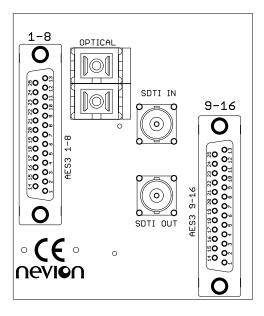


Figure 7.4 AES-VMUX-C3:Flashcase, 16 AES Molex KK ports, BNC SDTI, single optical connector

Figure 7.5 AES-VMUX-C4: AES ports 1-8, BNC SDTI and single optical connector

Figure 7.6 AES-VMUX-C5: AES ports 1-16, BNC SDTI with a passive loop-through relay and dual optical connectors

The Passive loop backplane AES-VMUX-C5 may only be used with modules with hardware revisions HW 1.1 and greater.

		0	
Signal		O ^{\(\infty\)}	and
AES 1	gnd	40 02 12 0 01	gnd -
AES 2	-	20 Op	gnd +
AES 3	gnd	NO 00	-
AES 4	+	80 0°	gnd
AES 5	gnd	00 00 00 00 00 00 00 00 00 00 00 00 00	-
AES 6	-		gnd
AES 7	gnd	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+
AES 8	-	40 0°	gnd +
			-
		0	

Figure 7.7 The backplanes use the TASCAM standard pin assignment for 8 balanced audio channels on the female DB-25.

Figure 7.8 Molex KK connections

The standard backplane supplied with the AES-VMUX is the AES-MUX-C1.

8 LEDs

The module has four LEDs.

8.1 Status LED

This turn red for 1 second when power is applied and then turn green when the FPGA code has been loaded correctly.

The LED is green

• the module is programmed and functioning normally.

The LED is orange

• the module is not programmed or is in the process of being programmed

The LED is red

- there is something wrong with the module power supply levels OR
- the FPGA code has not loaded correctly

8.2 SDTI Input LED

The LED is green

• the SDTI signal is received correctly.

The LED is orange

• the input video standard is 625/25i but the signal is not a Nevion SDTI audio signal

The LED is red

• there is no input or the module is unable to lock to the signal.

8.3 EDH LED

The LED is green

• the SDTI signal is received correctly and has no errors in the EDH flags.

The LED is orange

30

• the EDA flag is set meaning that an error has occurred in the multiplex in a module upstream.

The LED is red

• there is no input or the signal has errors.

8.4 Optical option LED

The LED is orange

- an optical SFP option is not present OR
- the SFP is not a Nevion video SFP.

The LED is red:

- the input signal is too low or high power OR
- the laser has failed

The LED is green:

- the optical input signal is present and correct AND
- the laser is operating with the correct power

9 FLP4 commands

FLP stands for Flashlink Protocol. The current revision of this protocol is 4, hence FLP4. This specification is available from Nevion support.

The following FLP4 block commands are used in the monitoring and control of the module.

- ablk
- ceq
- lsr
- misc
- mtx
- pin
- pwr
- vmon

FLP4 block numbering is 0 based while the display on the webpage and numbering of the physical connections is 1 based.

9.1 ablk

The ablk blocks list the AES port direction and signal sampling frequency. Inputs report AES input signal presence.

Outputs report signal presence on the routed timeslot.

9.2 ceq

The cable equaliser block reports signal presence on the electrical input.

9.3 misc

The misc block has several keywords reporting the following:-

- the programming state of the module where 'fin' indicates a successful programming.
- ovr is the Card Mode where configuratioon is not allowed form GYDA.
- the locating state where the front LEDs flash. The keyword 'locating' is followed by the number of seconds of locating state remaining.

9.4 mtx

The two first matrices change sizes to suit the AES port directions but both have 64 sources.

- mtx 0 is de-multiplex source control.
- mtx 16 is multiplex timeslot control.
- mtx 32 is used to report the SDTI input in use. 0 is the electrical input, 1 is the optical input.
- mtx 33 is used to indicate that the Master clock mode is active.
- mtx 34 is used to set the SDTI input selector mode. 0 is Auto, 1 is fixed to electrical, 2 is fixed to optical.

9.5 pin and Isr

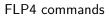
The optical option parameters and status are read from the installed Nevion video SFPs

9.6 pwr

The pwr blocks from 0 to 2 list the levels of the power supplies as measured by the micro-controller.

- 0 is digital 1.2V
- 1 is the frame 5V
- 2 is digital 3.3V The frame supply is measured after the module fuse and filtering.

9.7 vmon


The vmon block is a video stream analyser block which can identify a number of different errors in the video frame. The info page shows the errors that occurred since the last GYDA update with red.

Errors that will be present as a result of other errors are masked out to allow the user focus to see the most important error. i.e. If the lock error is active (red), the other errors will be green.

The block has an error counter with accumulates the number of video frames that have had errors. The counter may be reset on the info page.

The different errors may be masked out individually by the user in order to isolate certain events. The vmon block is configured on the conf page but the error mask is only shown after the black 'pulldown' triangle has been clicked on. The masking effects the counter as the vmon block no longer sees the error. Masked out errors are shown as grey blocks on the info page.

The signal integrity alarm will be triggered if the error parameters shown on the conf page are

exceeded.

The VS (Video Standard) alarm is triggered if the input video signal is not a Nevion SDTI audio signal ${\sf SDTI}$

9.8 On-site re-programming.

The module may be re-programmed on site with a GYDA Multicon system controller. Firmware and instructions will be provided by Nevion support when necessary.

10 General environmental requirements

The equipment will meet the guaranteed performance specification under the following environmental conditions:

Operating room temperature range	0°C to 45°C
Operating relative humidity range	<90% (non-condensing)

The equipment will operate without damage under the following environmental conditions:

Temperature range	10°C to 55°C
Relative humidity range	<90% (non-condensing)

11 Product Warranty

The warranty terms and conditions for the product(s) covered by this manual follow the General Sales Conditions by Nevion, which are available on the company web site: http://www.nevion.com

Appendix A Materials declaration and recycling information

A.1 Materials declaration

For product sold into China after 1st March 2007, we comply with the "Administrative Measure on the Control of Pollution by Electronic Information Products". In the first stage of this legislation, content of six hazardous materials has to be declared. The table below shows the required information.

	Toxic or hazardous substances and elements					
組成名稱 Part Name	鉛	汞	镉	六价铬	多溴联苯	多溴二苯醚
	Lead	Mercury	Cadmium	Hexavalent	Polybrominated	Polybrominated
	(Pb)	(Hg)	(Cd)	Chromium	biphenyls	diphenyl ethers
				(Cr(VI))	(PBB)	(PBDE)
AES-VMUX	0	0	0	0	0	0
AES-VMUX-SFP	0	0	0	0	0	0

O: Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006.

This is indicated by the product marking:

X: Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006.

A.2 Recycling information

Nevion provides assistance to customers and recyclers through our web site:

http://www.nevion.com/. Please contact Nevion's Customer Support for assistance with recycling if this site does not show the information you require.

Where it is not possible to return the product to Nevion or its agents for recycling, the following general information may be of assistance:

Before attempting disassembly, ensure the product is completely disconnected from power and signal connections.

All major parts are marked or labeled to show their material content.

Depending on the date of manufacture, this product may contain lead in solder.

Some circuit boards may contain battery-backed memory devices.