

D1.4: Final Ethernet/IP

switch system prototype

Version 1.0 Final

30 January 2019

Only for members of the consortium

Ref. Ares(2020)627863 - 31/01/2020

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 2 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

Grant Agreement No.: 866656

Project Acronym VIRTUOSA

Project Title Scalable Software Defined Network Architectures for Cooperative

LIVE Media Production exploiting Virtualised Production Resources

and 5G Wireless Acquisition

Project Start Date (and

Duration)

1 September 2019 (24 months)

Work Package D1.4: Final Ethernet/IP switch system prototype

Due Delivery Date 31 January 2019

Actual Delivery Date 30 January 2019

Lead Participant for

this Deliverable

Nevion AS (NEVION)

Mellanox Technologies LTD (MLNX)

LOGIC media solutions GmbH (LOGIC)

Institut für Rundfunktechnik GmbH (IRT)

Lead Responsible Yonatan Piasetzky

Dissemination level

Only for members of the consortium

Status Version 1.0 Final

History of changes

Version Date Change

0.1 2 January 2020 Initial Draft

1.0 30 January 2020 Final Version

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 3 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

1. Executive summary ... 4

2. SN3700 Ethernet Switch .. 5

2.1. General Specifications .. 5

2.2. Mellanox Onyx Operating System .. 6

2.2.1. Mellanox Onyx Feature highlight ... 6

3. OpenFlow Interface .. 8

3.1. OpenFlow basics .. 8

3.2. OpenFlow workflow ... 9

3.3. Multicast NAT ... 11

4. PTP .. 12

4.1. PTP Principles ... 12

4.2. Clock Types and Operation Modes ... 14

4.3. PTP Domains .. 14

4.3.1. Boundary Clock ... 14

4.4. PTP in VIRTUOSA .. 16

5. Clean switching and salvo .. 17

5.1. Problem statement .. 17

5.2. Previous solution.. 17

5.3. Current solution ... 17

5.3.1. Clean switching ... 17

5.3.2. Salvo .. 18

5.3.3. Implementation ... 18

5.4. Limitations .. 18

5.5. Interface ... 18

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 4 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

1. Executive summary
This document gives a brief explanation and introduction to the important components of the

Mellanox SN3700 switch, required to successfully operate the VIRTUOSA IP network.

This document also summarizes the work done by Mellanox in the scope of the VIRTUOSA

project, according to the requirements posed by the consortium.

It briefly goes over SN3700 specifications, and then dives into Openflow interface, PTP and the

extended features added to them, as well the clean switching idea and implementation.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 5 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

2. SN3700 Ethernet Switch

2.1. General Specifications
Mellanox SN3700 200GbE spine/super-spine offers 32 ports of 200 GbE in a 1U form factor.

It is built upon Mellanox Spectrum-2 switching ASIC and carries a total throughput of 12.8Tb/s.

Full specifications:

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 6 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

2.2. Mellanox Onyx Operating System
Mellanox Onyx is a high performance, flexible and cloud-scale switch operating system,

designed to meet the demands of next-generation data centers.

Onyx leverages capabilities of the SN3000 series to provide greater magnitudes of scale, with

up to 512K ACLs, state-of-the-art telemetry, enhanced QoS, exceptional programmability

that enables a flexible pipeline supporting both new and legacy protocols, a larger fully-

shared buffer, and more.

2.2.1. Mellanox Onyx Feature highlight

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 7 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 8 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

3. OpenFlow Interface

3.1. OpenFlow basics
Mellanox Onyx supports OpenFlow 1.3. OpenFlow is a network protocol that facilitates direct

communication between network systems via Ethernet. Software Defined Networks (SDN)

allows a centralist management of network equipment. OpenFlow allows the SDN controller

to manage SDN equipment. The OpenFlow protocol allows communication between the

OpenFlow controller and OpenFlow agent.

OpenFlow is useful to manage switches and allow applications running on the OpenFlow

controller to have access to the switch’s data path and provide functionality such as flow

steering, security enhancement, traffic monitoring and more.

The OpenFlow controller communicates with the OpenFlow switch over secured channel

using OpenFlow protocol.

An OpenFlow switch contains a flow table which contains flows inserted by the OpenFlow

controller. And the OpenFlow switch performs packet lookup and forwarding according to

those rules.

OpenFlow switch implementation is based on the hybrid model, allowing the coexistence of

an OpenFlow pipeline and a normal pipeline. In this model, a packet is forwarded according

to OpenFlow configuration, if such configuration is matched with the packet parameters.

Otherwise, the packet is handled by the normal (regular forwarding/routing) pipeline.

Utilizing the built-in capabilities of the hybrid switch/router is the main benefit of the hybrid

mode. It increases network performance and efficiency – faster processing of new flows as

well as lower load on the controllers. The hybrid switch processes non-OpenFlow data through

its local management plane and achieve better efficiency and use of resources, compared

to the pure OpenFlow switch.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 9 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

3.2. OpenFlow workflow
The OpenFlow (OF) pipeline is deployed in parallel to the usual Mellanox Onyx pipeline.

The ingress port must be deployed in hybrid mode as to serve both the OF and normal

Mellanox Onyx pipeline.

The ingress packet which passes the VLAN filter and is a match to the user ACL tables either

progresses to the regular Mellanox Onyx flow, or the OpenFlow pipeline depending on the

port coupling.

The OpenFlow pipeline is displayed in figure 1.

Figure 1 - OpenFlow pipeline in Mellanox Onyx

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 10 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

Table 1 presents a general summary of the capabilities of the OpenFlow 1.3 pipeline in

Mellanox Onyx.

Table Match Action Group Meters
ACLs [0-249] • in_port

• dl_src

• dl_dst

• dl_type

• vlan_vid

• vlan_pcp

• ip_src

• ip_dst

• ipv6_dst

• ipv6_src

• ip_proto

• ip_dscp

• ip_ecn

• ip_ttl

• 14_src_poert

• 14_dst_port

• tunnel_id

• metadata 0xFFF

• mpls_label

• Table must be

configured using

“openflow table

match-keys” to

support the

following

fields:

• ip_src_in

ner

• ip_dst_in

ner

• ignr_eth_

type

(Dynamic key)

(Arbitrary mask)

• Push/pop VLAN

• SET_TTL

• DEC_TTL

• goto_table

• Set queue

• Eth SRC/DST

MAC

• VLAN ID

• PCP

• DSCP

• ECN

• Output

• Group

• Meters

• Normal

• ALL – Output

ports, Set field

• Select –

{weights}

Output ports

(without LAG)

• FF – Output

ports

• KBps/PKTs –

{Burst}

• Drop

FDB [250 • vlan_vid

• dl_dst

(Exact match)

• OUTPUT

• DROP

• Normal

Select – {Weights}

Output ports

(without

LAG)

N/A

Router [251] • ipv4_dst

• ipv6_dst

(LPM)

• DEC_TTL

• SET_DMAC

• OUTPUT

• DROP

(Must have

DEC_TTL

and SET_DMAC

when

output action is

implemented)

Select – {Weights}

output ports +

set_dmac

+ dec_tll

N/A

Table 1 - Summary of OF1.3 Capabilities in Onyx. In red – capabilities added as part of this work

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 11 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

3.3. Multicast NAT
As part of the VIRTUOSA project, as stated in the SOW, Mellanox switch will perform Network

Address Translation (NAT) of outgoing multicast media flows to route RTP(Real-time Transport

Protocol)/ UDP/IP streams to receivers.

This is required, so endpoint configuration of the device will not be required, which will reduce

complexity of network infrastructure substantially, while allowing standardized NMOS

discovery, registration and control protocols.

As part of this work, in order to support such requirement made by the project, support was

added to Set field action in group all ACL tables, as indicated in red in table 1. This allows for

multiple multicast streams to egress the switch with each separate destination IP in the

packet.

In OpenFlow, in accordance to OpenFlow 1.3 specifications, this is done by creating a group

of type all, and adding buckets to this group. Each bucket will have set field actions as well

as output port actions.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 12 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

4. PTP
Synchronizing network applications require their wall clock time to be aligned precisely with a

reference time source (to the order of micro seconds or less). To achieve such accuracy, the

application needs the support of networking HW (switch and adapter card), to provide the

means to stamp time-sensitive packets. It also requires a time synchronization protocol which

would make use of the HW time stamping to adjust its wall clock time to an accurate clock in

the network.

4.1. PTP Principles
The basic principle of PTP is as follows:

Slave time = master time + propagation delay + offset.

The purpose of the protocol is to align the slave and the master time so that the gap

between them is the propagation delay of the packet. Or in other words, the purpose of the

protocol is to use the offset to correct the slave time so the offset between the master

sending the packet and the slave receiving the packet is the propagation delay.

Master time is sent periodically by a reliable clock source named Master Clock (MC). In a PTP

network, one single reference source is elected called Grand Master Clock (GMC).

Propagation delay is calculated between each node and the MC by one of the two

methods provided by the standard and further explained below.

To reach sub-microsecond resolutions, all the time stamps which record when a packet is sent

and received should be done in the HW. This may impose interaction between SW and HW to

query the HW time and send follow-up messages. This issue is further explained below in 2 step

section.

Assuming the propagation delay in the network is symmetric, the propagation time is the

average time that took the sync and delay req messages to be switched.

Propagation delay = (T4-T1-(T3-T2))/2=(T4-T1+T2-T3)/2

T1 represents the time that the Sync packet left the master which is the master time.

T4 represents the time the Sync packet arrived at the slave.

T2 represents the time the Delay_Req message left the slave.

T3 represents the time the Delay_Req message arrive at the master.

Figure 2 provides an example of the stages required by a slave clock to align its time to the

master clock:

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 13 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

Figure 2 - PTP synchronization process

Table 2 presents the PTP message formats:

Table 2 - PTP message formats

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 14 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

4.2. Clock Types and Operation Modes
The types of clocks available are as follows:

• Grand Master Clock (GMC) – the reference time source derived from an accurate clock

such as a GNSS driven clock (i.e. GPS, GLONASS, GALILEO)

• Boundary Clock (BC) – a network device that acts as slave to its master and as master to its

slaves. (Mellanox Onyx implements only this).

• Ordinary Clock (OC) – a clock that operates either as a Master or a Slave. In the case of a

slave, the endpoint whose clock is been synced (normally a host/server).

• Master Clock (MC) – a clock which operates as a Master and derives its timing capabilities

from the clock chain up to the GMC. It typically serves as a port on a BC connected to a host

running as a slave.

• Transparent Clock (TC) – a PTP aware switch capable of measuring the PTP packet

switching delay (transient time) and updating the data in the packet. In peer-to-peer (P2P)

delay calculation mechanism, a TC device is also required to calculate its delay from the

next hop toward the MC and add the value to the switching delay.

Two modes of delay calculations are defined:

• End-to-End (E2E) – each slave calculates its delay from the MC by running Delay request/

delay response sequence (Mellanox Onyx implements only this).

• Peer-to-Peer – propagation delay (Pdelay) is calculated periodically on each link between

the slave and the MC independently. The time synchronization packet sent from the MC to all

the slaves in the network is updated by each of the downstream nodes with both switching

delay (the time that the packet traversed the switch) and upstream hop Pdelay.

4.3. PTP Domains
A domain consists of one or more PTP devices communicating with each other. PTP domain

defines the scope of PTP message communication, state, operations, data sets, and

timescale.

4.3.1. Boundary Clock
In a full E2E PTP deployment, the GMC needs to respond to each slave’s delay request

message. A normal profile of PTP may require a few delay calculations per second. An

average GMC can address few thousands of messages per second. This imposes that direct

slave/GMC communication limits the number of overall OCs to ~8K. To scale beyond that,

there is a need for a hierarchy between the GMC and the slave. This is achieved by

implementing BC, either in the TOR switches or on all the switches in the DC.

The following figure shows the master/slave role that a boundary clock implements between

the MC and the Slave (OC).

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 15 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

Each BC acts as a slave towards the GMC and as GMC to its local slaves. Although adding a

BC device introduces accuracy degradation as explained above, it becomes mandatory

when the number of slaves on a single MC exceeds few thousand devices.

Another use of BC is to bridge between networks. When running PTP over native Ethernet

packets, to create larger PTP domains, there is a need to bridge between the broadcast

domains. This is done by BC switches.

Default PTP Profile Attributes (SMPTE 2059-2) is shown in Table 3.

Table 3 - Default PTP profile attributes

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 16 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

4.4. PTP in VIRTUOSA
According to VIRTUOSA SoW, timing and sync distribution will be according to PTPv2 using

SMPTE ST 2059-2 PTP profile. The common timing reference for the PTP grandmaster in the

system is a GNSS endpoint, which will be connected to one of the Mellanox leaf switches and

distribute PTP time.

To support this requirement, under the scope of this work, support was added for the

Boundary Clock mode of operation in SN3700 switches, with required support of up to 48 PTP

clients per port.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 17 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

5. Clean switching and salvo

5.1. Problem statement
When switching endpoints during broadcast production, the streams need to switch in a

“clean” and synchronized manner (i.e., different streams should switch together, on the

boundary of a frame).

5.2. Previous solution
Up until this work, the way to implement such requirement, is by having the endpoint

subscribe and buffer both flows, switch between them and then unsubscribing from the older

one. This creates redundant network and memory usage, as displayed in figure 3. Another

problem with this solution is that it requires separate API calls to join/leave each stream, i.e.,

the switching of different flows does not occur on the same time, thus creating timing

constraints on the API calls, according to the buffer size and amount of streams switched

simultaneously.

Figure 3 - IGMP based previous solution for switching media streams

5.3. Current solution
Current solution as provided in the scope of this work, comes to solve the issues defined in the

above section, and it is divided into 2 – clean switching and salvo.

5.3.1. Clean switching
Clean switching refers to the capability of the switch to perform the switch of the stream

routing on the edge of the frame, thus removing the need of the endpoint to accumulate

both streams while performing the switch. In VIRTUOSA this capability is implemented by

adding an ability to match on an RTP timestamp range and forward accordingly (RTP

packets from the same frame all share the same timestamp).

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 18 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

5.3.2. Salvo
Salvo is a term used to describe the ability to switch several flows simultaneously in an atomic

fashion. i.e., all flows switch in the same time, removing the need to compensate for the lag

between all flows subscribe/unsubscribe and thus removing major timing/memory constraints

that were induced before.

5.3.3. Implementation
Current solution as explained above, is implemented in Mellanox SN3700 switch, using a P4

program written for this end, and compiled using internal Mellanox compiler. The program

adds the ability to match on an RTP timestamp range, to mark a switch event. Then, it is

possible to match on the switch event, in order to simultaneously switch all flows registered to

this event.

Figure 4 - Flow switch after time t1, using new P4 based clean switching and salvo solution. This type of solution

removes the aggregated bandwidth and time constraints that were induced by the old IGMP based solution

5.4. Limitations
Current implementation of clean switching in Spectrum-2 switches, support up to 12 different

switching events parallelly (i.e., 12 different time ranges can be defined).

Parsing of the RTP header will occur based on the UDP destination port, and up to 16 different

UDP ports are supported simultaneously.

5.5. OpenFlow Interface
Clean switching is exposed to the OpenFlow agent, enabling VideoIPath controller to be

able to program the switch. The Interface exposed extends the OpenFlow Extensible Match

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 19 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

format (OXM) as defined in the specifications. For the purpose of this work a new OXM TLV

was defined, of class Experimenter. The exact experimenter ID and oxm_field are yet TBD.

The RTP timestamp TLV is special in the sense that its mask is a value used to express higher

boundary of an integer range, thus an unmasked TLV will mean matching from timestamp

given in the OXM value indefinitely, while a masked TLV will mean matching the RTP

timestamp in the values between the value and the mask.

Figure 5 shows an example of a Flow Match Field structure containing RTP timestamp OXM,

matching from timestamp 5 until timestamp 10.

31 16 15 9 8 7 0

oxm_class = Experimenter (0xffff) oxm_field = TBD HM=1 oxm_length

Experimenter ID = TBD

RTP timestamp value = 0x5

RTP timestamp value = 0xa
Figure 5 - RTP timestamp OXM packet header

Currently, RTP timestamp match is only supported as a single match field, and the only

supported instruction is Write-Metadata.

Also, a new, dedicated table_id was added that supports RTP timestamp range match as

explained above, which is table_id=252. The new datapath flow is shown in figure 6.

Figure 6 - New OpenFlow datapath which supports clean switching

All other parts of the solution use standard OpenFlow1.3 implementation and will not need

any changes.

D1.4: Final Ethernet/IP switch system prototype

 Only for members of the consortium 20 of 20

This project has received funding from the European Union’s Horizon 2020 research and innovation program under

grant agreement No 866656. This document reflects only the author’s view and the European Commission is not

responsible for any use that may be made of the information it contains.

5.6. Usage example
Let’s say for example we have two flows RTP flows configured in our OpenFlow switch:

priority=10,ip,nw_dst=233.1.1.1->Output port 1

priority=10,ip,nw_dst=233.1.1.2->Output port 2

In order to switch between those flows in a clean fashion (on the edge of the frame), one

needs to first configure two additional flows, matching on an unused metadata bit:

Priority=100,ip,nw_dst=233.1.1.1,metadata=0x1/0x1->Output port 2

priority=100,ip,nw_dst=233.1.1.2,metadata=0x1/0x1->Output port 1

Lastly, one needs to configure an RTP timestamp match that will write this metadata and

trigger the event:

Table_id=252,Rtp_ts_rng=1234,actions=write_metadata=0x1/0x1

Thus, when packets with timestamp larger than 1234 will arrive on the switch they will switch

routing together to their new destination

